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The title flow has been studied by measuring the drag force on, and by observing 
the flow field around, a sphere rising through a large, rotating tank of water. 
Long, almost stagnant, regions are formed up- and downstream within the 
shadow of the sphere and are surrounded by a thin annular region within which 
the velocity is larger than the mean velocity of the approach flow. Several regions 
are found within which vortex-jump phenomena occur and it is concluded that 
such features exert a controlling influence over the dynamics of the observed 
flow field. 

1. Introduction 
We reconsider a problem originally outlined by Proudman (1916) and by 

Taylor in a series of papers published between (1917) and (1923), and look in 
detail at  the flow created by a body as it moves along the axis of a long, rotating 
tank of water. 

By now it is well known that rotation introduces many novel features into the 
possible motions of a fluid. An extensive study has recently been published by 
Greenspan (1968). Of particular interest in this work are: (a)  the ability of a 
rotating, incompressible fluid to support circularly polarized wave motions 
that propagate along the rotation vector; ( 6 )  a resistance to motions across the 
externally applied vortex lines, i.e. a Coriolis force acting on fluid particles as they 
try to move radially; (c )  the appearance of various secondary motions, usually 
associated with the boundary layer or shear layers required to match a region 
of rotating flow to a solid surface or adjacent fluid region rotating at  a different 
rate. The existence of these effects require considerable additions to our intuition 
before we can construct even the general character of the flow field produced by 
a particular rotating geometry. 

An excellent example of the need to modify our previous intuition occurs in 
the present case, for within its very simple framework exists a bewildering variety 
of curious phenomena. The basic phenomenon was discovered, experimentally, 
by Taylor (1922). He found that as a sphere moved slowly? through a fluid in basic 
solid-body rotation, a column of fluid was pushed ahead of the sphere as a ‘slug’ 

The real meaning of the adverb slowly will appear later when it is possible to attach 
some quantitative measure t o  it ( Q  4, figures 11, 12). 
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of zero axial velocity, relative to the body. In  the limit of zero viscosity this 
column was presumed to become a cylinder, extending ahead and behind the 
body, with generators parallel to the axis of rotation and just touching the 
largest cross-section of the body. What he saw has been presumed to be the 
viscous modification of the ideal flow. Taylor reported that this behaviour 
appeared only when the parameter N = 2Qa/U,t exceeded a magnitude of 
about 6. Here !2 is the angular velocity of the solid-body rotation, U, and a are 
the velocity and radius of the sphere, respectively. No cylindrical flow was seen 
behind the body. 

Further observations by Long (1953) demonstrated the existence of a train 
of waves downstream of the disturbing body when N was small. They apparently 
disappeared as N approached the slug-flow r8gime. Again, there were visualiza- 
tions of slug flow ahead of the body and of a strong, cyclonic vortex behind. 

The questions that arose in reading these accounts and the reviews of more 
recent years (Squire 1956, Greenspan 1968) were first tested, by the writer, in 
a very simple rotating-tank apparatus. Several curious inconsistencies were 
found. The existence of the forward slug was verified, but it did not disappear 
when N was less than 6. It was much in evidence for values around 2, but in 
a modified form. Under no circumstances was the axial velocity within the slug 
zero, although it was very much smaller than U,. A rearward slug was observed 
at  large N .  For small values of N it rotated rapidly, had an oscillatory character, 
was much longer than the forward slug and completely modified the separation 
bubble that normally exists at  the Reynolds numbers of the experiments. 

A more detailed experimental programme was carried out in order to under- 
stand these and other features of the flow. The study can be divided into several 
fairly distinct parts. In 8 3, we consider the drag force experienced by a sphere 
as it rises through a rotating, viscous fluid. These measurements point to certain 
interesting regions of flow, which are studied in more detail in $4. Here observa- 
tions of the velocity fields are presented, together with certain objections that 
might be raised to the interpretation of these observations. Section 5 has been 
added in an attempt to answer the more obvious of these difficulties. 

Taken by themselves these results have significance, for they tell a great deal 
about possible motions in a rotating system. They have added significance when 
their similarity to magneto-fluid dynamic and stratified fluid flows is considered. 
In  fact, this similarity was one of the main reasons for performing the present 
experiments and led to considerable insights into the similar, but inaccessible, 
magneto-fluid dynamic flow (Maxworthy 1 9 6 8 ~ ) .  

Several authors have added to our theoretical knowledge of the subject. Of 
necessity, their work is of limited applicability because of the strict assumptions 
needed to make the problem tractable. 

We start with the limiting case of a steady, inviscid flow. Taylor (1922) dis- 
covered the basic inconsistency of such a limit. There are insufficient boundary 
conditions to determine the flow completely, and one is forced to make suitable 
assumptions to remove the degeneracy. Taylor gave a particular solution for 

t 21;1a/ U ,  measures the relative magnitude of Coriolis to inertia forces or inertial wave 
propagation speed to convection speed. 
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which all the velocity components at  the body are zero in this inviscid flow ! 
More recently, various authors have chosen to attack this difficult problem in 
a variety of ways. Stewartson (1952) used a Laplace transform technique and 
considered how the inviscid flow, for large N ,  could be produced by an impulsively 
started body, a problem that had been partially solved by Grace (1926) using 
a power-series expansion in time. Morrison & Morgan (1956)) Childress (1962 
and private communication) and, more recently, Moore & Saffman (1969) con- 
sider a steady flow but include viscosity and take the limiting flow as T and 
R + co, with N = 2T/R remaining finite but large; where T, the Taylor number, 
is Qa2/v and R, the Reynolds number, is U,a/v; I) is the kinematic viscosity of 
the fluid. Bretherton (1967) has studied the impulsive motion of a cylinder in 
a viscous fluid in considerable detail. He showed how high-frequency inertial 
waves are preferentially damped while the longer wavelengths propagate further 
and ultimately produce disturbances far from the body. The picture that emerges 
from these studies is sketched in figure 1. Stagnant rotating regions extend a 
distance O ( T )  up- and downstream. These are matched to the outer flow by 
a shear layer of O(T-4) in thickness and to the body by an Ekman boundary 
layer of thickness O(T-4). All these studies predict a drag coefficient C, = 1-71N, 

- Uniform flow, U,  Transition layer of thickness 
O(T-9 at fixed axial location Ekman layer 

& ~ I I  axiai velocity o(T-+) 
Swirl velocity O(U,) 

I 

t--- -1 
FIGURE 1. Sketch of linear theoretical model of the flow at large T and N .  

where C, is the conventional drag coefficient: dragf+pU2,na2, where p is the 
fluid density. No attempt has been made to calculate the more complicated 
interaction problem defined when the effect of the Ekman boundary-layer flux 
on the outer flow is to be found. It is well known that such effects are of great 
importance in rotating flows (Rott & Lewellen 1966), but they are not sufficiently 
well understood to allow a quantitative, or even qualitative, extension to the 
present case. 

Long (1953) removed the non-uniqueness by allowing the body to move in 
a tube of finite radius and used the boundary conditions at the tube wall to give 
the required, extra condition. In  this way, he was able to predict, and in fact 
observe, the existence of a set of standing waves behind the body for T >> 1 
and N = O(1). 

Stewartson (1958) and Miles (1969a, b) have calculated the inviscid flow 
around a sphere and the latter the inviscid flow about a slender ellipsoid of 
revolution under the assumption of no upstream wave propagation and N not 
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large. These results have some bearing on the experimental observations and 
further comments are postponed until $4.2.  

Childress (1964) presented a solution for a very viscous fluid, i.e. R and T + 0, 
with RITB remaining finite, but this is not an appropriate limit for the present 
case, except far up- and downstream. 

When ,judiciously chosen, a posteriori, these theories have some of the features 
encountered in the experimental flows. Unfortunately, the range of parameters 
over which any one of the theories applies is usually quite limited and in some 
cases cannot even be reached. 

2. Apparatus and experimental techniques 
Basically, the system coiisists of a rotating cylinder of water through which 

a body can move. 
The details of this simple system are shown in figures 2 and 3. A Lucite cylinder 

is supported, axially, on a tapered-roller bearing and transversely by a 'steady- 
rest ', consisting of three rubber-tyred wheels. All of these bearings are fixed 

Drip pan, [Support frame 

(11) Front elevation 

FIGURE 2. Details of the rotating-tank apparatus with pulley system, 
used to tow a sphere and hydrogen-bubble wire, installed. 

to a massive angle-iron frame, which is the main supporting structure for the 
whole apparatus. Two light aluminium arms are clamped to  the cylinder, and 
a large ring, of 4 ft. diameter, is attached to  them. The ring and arms serve as 
support for a camera, light source and any other peripheral equipment that might 
be required. A system of slip rings is machined into the brass base of the large 
cylinder and connects the various internal electrical devices to the external 
power supplies. The latter suppIy power to  the lights, to the shutter mechanism 
of the camera, or to the drive motor of the moving picture camera when it is used. 
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I n  order to eliminate optical distortion in the test area, due to  the lens effect 
of the cylindrical air/Lucite/water interface, it was surrounded over a 24 in. 
length by a rectangular box filled with water, indicated as ‘viewing box’ in 
figure 2 .  

Different pieces of test apparatus could be introduced into this basic rotating 
system for the following purposes : 

Support arms 

u 
Adjustable 

. hypodermic 

2.2. Xphere drag rneccsurements 

A device to release a freely rising sphere in order to measure its time of flight 
through the tank, and hence its drag, is shown in figure 3(a) .  It consisted of 
a multi-barrelled magazine, to hold several spheres, which could be moved, 
through a system of wires and pulleys, from outside the rotating tank. Each 
sphere was backed by a weak spring, and as it was brought into position below 
the single exit hole, the sphere would spring free and continue its rise unimpeded. 

The actual measurement of sphere drag is a simple modification of the tech- 
nique used in Maxworthy (1965). Twelve &in. diameter and eight gin. diameter 
polypropylene spheres were plated with a thin coating of copper. By carefully 
controlling the removal of some of the copper in a nitric acid bath, a sphere could 

to release dyc 

Telescoping 
J arms \ 

lble pulley 

One of twelve chambcrs 
to  hold spheres 

I 

reel 

rn 

Same drive 
mechanism as ( r r )  

-[primary drive wires j 
clutch 

FIGURE 3. Various pieces of equipment that could be lowered into the basic rotating tank 
apparatus t o  perform the following tasks: (a) release a series of buoyant spheres from 
the bottom of the tank; ( b )  release a single sphere from the centre of the tank; (c) tow 
a sphere along axis of the tank and rotate it a t  a rate independent of the basic rotation 
rate; (d) tow a sphere and hydrogen-bubble wires along the axis of the tank. 
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be produced that would rise at approximately the desired speed in a tank of 
water. In this fashion, a series of spheres was made which rose at  velocities 
between 7 cmlsec and 0.5 cmlsec. Each sphere was given an identifying mark. 

The spheres were placed in the magazine of the sphere-release mechanism of 
figure 3 (a) ,  and the whole framework lowered into the stationary tank. When 
all random fluid motion had ceased, the spheres were released in turn and their 
time of flight measured. The magazine was reloaded, the whole tank set into 
rotation, and the time of rise measured again. Runs with and without rotation 
were made alternately until the full range of rotation parameter had been 
covered. Since we assume that the curve of drag coefficient (CD) versus Reynolds 
number is known with no rotation, runs with no rotation measure the buoyancy 
force acting on the sphere. When the same sphere rises through the rotating 
fluid, its buoyancy force is the same, but its time offlight and hence its R and C, 
are changed. Thus, by multiplying the calibration drag coefficient by the square 
of the inverse ratio of the rise times, we obtain the drag coefficient with rotation, 
and by multiplying the calibration R by the ratio of the rise times, we obtain R 
with rotation. 

2.3. Flow $field observations 

Several methods were used for qualitatively and quantitatively observing the 
flow field due to the sphere motion. Dye injection gave a first crude picture of the 
over-all flow pattern, and then the hydrogen-bubble technique was used to give 
a better quantitative picture of certain detailed properties of the velocity field. 
Since several different modifications of these techniques were used, each will be 
described in detail. 

Dye studies in the apparatus of figure 3 (b )  will be considered first. The sphere 
was started in a region of high dye concentration and rose into a region of clear 
water. It dragged with it dye trapped in regions where the h i d  was moving with 
essentially the sphere velocity. This method showed up the almost stagnant 
regions in front of and behind the body as well as some details of the flow in the 
boundary layers around the sphere, e.g. (figures 8, 9 a ,  b ) .  A sphere was released 
above or below a region of dyed fluid, in order t o  study the transient growth of 
the stagnant regions. 

If small amounts of dye were introduced into the test section slightly before 
solid body rotation had been achieved, they were drawn out into thin sheets 
wrapped around the axis of rotation. These so-called ‘Taylor-walls ’ essentially 
marked stream surfaces in the undisturbed fluid. If a sphere was allowed to rise 
through the centre of the region of marked stream surfaces, they were distorted 
in such a way that they still represented stream surfaces, but then of the flow 
about the body. 

Figure 3 ( c )  shows a towed sphere that could be rotated independently of the 
basic speed of rotation of the whole system. The sphere was mounted on a support 
shaft which in turn rotated in a Teflon bearing. This bearing was rigidly attached 
to a heavy wire frame which moved up and down in the same manner as the frame 
in figure 3 ( d ) .  In order to rotate the sphere independently, a secondary drive 
wire was attached at  its two ends to the brass end-plates; it also passed over 
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a double pulley attached to the frame and a secondary drive pulley mounted on 
the support shaft. As the carriage moved up and down, the secondary drive wire 
was pulled through the pulley system and rotated the sphere at  a rate that 
depended on the velocity of the sphere, once the geometrical factors had been 
fixed. This apparatus was used to observe the nature of the forward disturbance. 
The reasons for its use are discussed in Q 4.2. 

Dye observations were invariably lit from behind, the illumination falling on 
a translucent screen taped to the back of the viewing box. 

Finally, for quantitative velocity measurement we needed a mechanism to 
tow a sphere and some type of measuring instrumentation through the flow. It 
is this equipment which is shown installed in figure 2 and in further detail in 
figure 3 ( d ) .  It is supported within the Lucite cylinder by two brass end-plates 
rigidly connected by three stainless-steel tubes. Two continuous, stainless-steel 
drive wires, running in a system of grooved, free-running pulleys, supported 
a heavy wire frame, on which the sphere was mounted. Sphere and carriage 
could be traversed up and down, from outside the rotating system, by turning 
the drive drum from a variable speed d.c. motor through a magnetic clutch. 
The latter was incorporated so that drive motor and drive drum could be dis- 
connected. When disconnected, the drum would rotate at the same speed as the 
main system and the sphere be brought to rest. 

The hydrogen-bubble technique was used in this study and has been described 
by Schraub et al. (1965). With care, it can be used to give reasonably accurate 
quantitative measurements of velocity and a qualitative picture of the flow 
character. It was chosen in the present situation for several reasons. Disturbances 
due to the presence of the small wire were themselves small; the flow velocities 
were low enough for most conventional techniques to be quite inadequate; 
the difficulty of bringing electrical information out of the rotating system made 
photography of hydrogen-bubble lines particularly attractive. The technique 
can be used in any of several ways. 

By stretching a thin, bare platinum wire across a diameter in the flow ahead 
of the body and viewing the motion of the hydrogen bubbles as they were removed 
from the wire, two of the three velocity components, in a rotating co-ordinate 
system, could be determined. When a front elevation of the bubbles was viewed, 
the radial distribution of axial velocity i j z (?) f  could be found. If a plan view was 
taken, the radial distribution of swirl velocity i j o ( P )  could be measured. 

Because of geometric limitations, the latter method could not be used and the 
following, more convenient alternative substituted. With respect to the wire, 
the fluid and hence the line of bubbles were both moving axially and rotating 
(radial motion was assumed small for the times considered). In  principle, by 
pulsing the wire twice and forming two lines of bubbles at  different times, it was 
possible to extract both velocity profiles. Actually, such a method was not very 
accurate and it was necessary to form many lines of bubbles closely spaced in 
time and space in order to improve the accuracy. The method is more precisely 

-f 6, are the components of the velocity vector in a cylindrical rotating, co-ordinate 
system, 2, i., 0. 6 is the angular velocity, i.e. bg = GF. Superscript N refers to dimensional 
quantities. 
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FIGURE 4. Illustration of the method used t o  extract velocity information from hydrogen- 
bubble lines which are being both rotated and moved axially. Rearward wake four sphere 
radii downstream of sphere. N = 7.86, T = 390. 
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illustrated in figure 4, where a tracing from an actual experiment is shown; 
a photograph is shown in figures 9 ( c )  and 18 ( b )  for a different experiment. The 
time interval between each pulse is At = 0- 11 see, and distance is referred to the 
sphere radius, which is 0.952 em. The axial distance (Ax), moved by a hydrogen 
bubble with axial velocity 5, is given by A2 = v" . At(n+m), where n is the inte- 
gral number of pulses from the initial pulse and m is a quantity which represents 
the fraction of At which has passed since the last pulse was created and the photo- 
graph was taken. For given 5, A2 is found for each of the pulses present and the 
location marked; these marked points are joined by a smooth curve and extra- 
polated to zero time. This point represents the radial location with the chosen @. 
Any apparent radial displacement of this point from its extrapolated position is 
due to  rotation of the line of particles. Once the true radial location of a series of 
different velocities (@) is known, we can determine the azimuthal location of a 
particle by knowing its starting position and its radial location at some later time, 
and use the geometrical construction shown in figure 4. 

The radial velocity component is difficult to measure with any wire orientation 
and must be inferred either from the other velocity components, using the con- 
tinuity equation, or from the orientation of flow streamlines. 

The streamline patterns themselves can be found by coating the platinum 
wire with a suitable insulator, leaving only small bare sections at  appropriate 
intervals. As the wire and body move through the tank, the hydrogen-bubble 
trail is left behind to form a streamline, if the flow is steady, and unsteady streak- 
line otherwise. Alternatively, they can be found by using the dyed stream-tube 
method described previously, or by continuity of the axial volume flux. 

Finally, some idea of the three-dimensionality of the flow can be gained by 
running a bare wire with a continuous current. Distortions of the sheet of bubbles 
so formed indicate in a useful way the three-dimensionality of the wakes. 

Contrast between the hydrogen bubbles and the dark background was greatest 
when illuminated by the high-intensity lamp directed at  about 110-120" from 
the line of view of the camera, as shown in figure 1. 

In  most cases the information was recorded photographically, using either 
a 35 mm framing camera or a 16 mm cine camera. The latter was used as a substi- 
tute for direct visual observation, which proved to be difficult for a stationary 
observer viewing flow in a rotating system. It showed, initially, an oscillation of 
the basic solid body rotation which had not been suspected. Removal of these 
oscillations required a very careful realigning and balancing of the whole system 
to prevent oscillatory motions of the rotating tank, which were transferred to 
the rotating fluid through motions of the free surface, as discussed by Fultz in 
Kiichemann (1965). 

3. Results of sphere drag measurements 
These are shown graphically on figures 5 and 6, where they are plotted to 

facilitate comparison with conventional sphere-drag results with no rotation 
(figure 5) and so as to bring out the simple dependence on N when T and N are 
large (figure 6). Interpolation with the results of Maxworthy (1965), for drag 
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FIGURE 5. Drag coefficient (CD) verms Reynolds number (R) with 
interaction parameter ( N )  and Taylor number (T) as parameters. 
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FIGURE 5. Drag coefficient (CD) verms Reynolds number (R) with 
interaction parameter ( N )  and Taylor number (T) as parameters. 
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at very low R, has been used to extend the present results to lower R than the 
actual experiments. Several interesting features should be noted: 

(i) A t  low N the drag is less than the drag with no rotation; this occurs in the 
range 0 < N < 0.75 f 0.03, independently of T (cf. the results of Stewartson 
1968). Such a result can be explained physically by considering a weakly rotating 
fluid flowing over the sphere plus a rear recirculation region similar, in shape, 

C D  

1000 

Experimental results 

100 

10 

1 .o 

0.1 1.0 10 100 

N = 2aQ/U, 

FIGURE 6. Drag coefficient (CD) versus interaction parameter ( N )  with Taylor number 
(T) as parameter. See text for explanation of the shaded region. 

to that in a non-rotating fluid, i.e. viscous separation takes place before the equa- 
tor and the bubble has a larger transverse dimension than the sphere. The out- 
ward flow of rotating fluid over this bubble causes it to rotate at a rate less than 
the applied value, the pressure in the bubble increases, and the drag on the 
body decreases. 

(ii) For large T the drag coefficient depends only on N .  The value of N at which 
this first occurs is a function of T given approximately by N = 1.4 x lo2 T-Q. 

In  the present apparatus, for which 2alL = 0.013 (where L is the length of 
the tank), for large T and for large enough values of N ,  

C, N NPo7. 
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The results ofMaxworthy (1968 b ) ,  for which 2alL = 0-215, and some unpublished 
results of Fultz, can be used to extrapolate the present results to  those for an 
infinitely long cylinder. Then, for large T and N, 

C, = ANB, 

where A = 2.60 & 0.05; B = 1.00 2 0.01, which is to be compared with the inviscid 
calculation of Stewartson (1952) and others, in which C, = 1-71N. Here we must 
introduce an interesting coincidence for which there is no rational explanation 
a t  the moment. Moore & Saffman (1969) repeated the viscous calculations of 
Morrison R: Morgan (1956) and Childress (1962) using a simpler method. When 
they ex tended the calculation, using ‘a boundary-layer approximation to the 
viscous stresses and the equation of continuity’, they obtained a drag coefficient 
equal to 2.67N, which is only 2; yo greater than the measured value ! 

It seems unlikely that the drag should depend on the presence of the cylindrical 
walls, as detailed in Maxworthy (1965), although this possibility must not be 
overlooked in certain ranges of parameters where Long’s ( 1  953) arguments are 
valid, and only a few inertial wave-numbers are excited. Results for &in. and 
gin. diameter spheres were identical in the region of parameter space in which 
they overlapped. 

(iii) For very large T ( >  lo3) and for a small range of N between 1-4 and 4, 

CD = 4.10N2.00. 

Data for this range was obtained with reasonable certainty ( 0.02) by extra- 
polating the results a t  the experimental values of R to higher values. The shaded 
results on figure 6 below N z 2 are a guess based on the known constant values 
of C;, for N = 0 and the measured behaviour of CD a t  smaller values of T, i.e. the 
Observation that the drag coefficient with rotation is smaller than the value with 
no rotation, by a maximum of about 0.04 at large R. I n  fact, the maximum drag 
decrease divided by the value a t  N = 0 has a constant magnitude of 0.135 for 
the experiments reported. 

(iv) For intermediate ranges of T and N the drag is greater than the drag with 
no rotation, but does not exhibit any convenient dependence on the parameters 
over large variations in their values. 

These results point to  interesting regions in parameter space, which are in- 
vestigated in greater detail in the following sections. I n  particular, the results 
a t  large T and N exhibit such a simple drag law that the flow should have some 
features that are amenable to simple physical and mathematical interpretation. 

A by-product of these free-rise measurements are some observation on the 
dynamical behaviour of the spheres as they rose through the tank. When N was 
large, the sphere rotated at the same rate as the tank. As N was decreased below 
about 5, the sphere began to  rotate a t  a slower rate until a t  N around unity 
i t  was not rotating at  all in the laboratory frame of reference (cf. Taylor 1922). 
The transition from full rotation to  no rotation took place rapidly, almost 
discontinuously (see $4 for the comparable behaviour of the lengths of the 
‘Taylor columns ’). 
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4. Results of flow field observations 
4.1. General features of theJEow field 

Attempting to describe the flow field is a difficult task because of the wealth of 
detail that exists even in the simpler limiting case of large T and N .  Since the 
flow field also changes as the parameters vary from this case, the construction 
of a simple, logical picture is virtually impossible. 

I 

/ I  I V' 

FIGURE 7. Sketch of the flow around a sphere moving through a rotating fluid. 
Roman numerals refer to regions of the flow considered in detail in the text. 

We start our attempt with figure 7, which shows features that are common to 
the majority of the cases studied. It is biased towards the type of flow that is 
more typical of large values of N ;  flows at  small N are different in detail, not in 
general, qualitative features. Meridional streamlines are shown, together with 
axial velocity profiles. The shading indicates the almost stagnant region as shown 
by dye studies (figure 8, plate 1, and figures 9(a) ,  (b ) ,  plate 2). The flow field has 

FLnf  40 30 
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the following general features, which have been numbered and which are discussed 
in more detail later. 

The flow upstream has an oscillatory character made up of two distinct 
features. Region I is a region of velocity defect, i.e. velocity smaller than free 
stream, surrounded by region V, which has a velocity in excess of the free stream 
value. They have been given different numbers because fluid within them behaves 
in a different fashion as it approaches the sphere. Fluid that starts within the 
shear layer (region V) is being constantly accelerated and the layer becomes 
thinner. Close to the sphere the excess velocity has become 25-50 yo larger than 
free stream, the actual magnitude depending on the parameters of the flow. 
Maximum velocity is reached just beyond the sphere equator. The layer which 
emerges from behind the sphere (region VII) is narrower than its upstream 
counterpart, does not spread as rapidly and has a larger angular velocity. In  
transporting a ring of fluid from a given radius upstream to a smaller radius 
downstream a larger rotation rate is needed to approximately conserve angular 
momentum in this almost-inviscid flow. What happens to the fluid in the inter- 
mediate region VI  is not as clear as it was in the previously reported case 
(Maxworthy 196Sb). A vortex jump is still found to  occur and its location and 
intensity determine, or are determined by, the pressure in the rearward slug. By 
this we mean that the flow and pressure created by the jump must also be com- 
patible with the conditions within the almost-stagnant region, which are them- 
selves the result of the need for compatibility between the slug rotation rate and 
the Ekman layer flux (Moore & Saffman 1968). 

Since vortex-jump phenomena have been observed at several locations within 
the flow it seems appropriate to  consider their characteristics in more detail a t  
this juncture. At the moment the most useful description is due to Benjamin 
(1962) and (1967). Like the better-known hydraulic jump the vortex jump is 
considered to be a finite amplitude transition from an initial supercritical flow 
to a subcritical conjugate flow. Its occurrence in the present instance is so remi- 
niscent of the analogous case of free surface flow (figure 18 (a), plate 6) that there 
seems little doubt as to the veracity of Benjamin’s concept. Jumps have been 
found to occur under a variety of circumstances, and since there is no detailed 
theory useful in all cases the hydraulic analogy is a convenient way of classifying 
and qualitatively discussing the observed flows. 

Unlike fluid from region V, the fluid from region I slowly decelerates as it 
approaches the sphere. At the tip of the stagnant region (11) it suddenly de- 
celerates, from a finite fraction of Urn, to  essentially zero, within a very short 
distance. At the same time, its swirl velocity increases rapidly and viscous forces 
are very important in increasing the slug pressure considerably above free- 
stream stagnation pressure. Once within the stagnant region, this fluid is slowly 
drawn into the Ekman layer on the sphere at a rate determined by the slug 
rotation speed. Once this flow rate has been set, the fluid passes around the 
equator of the sphere and is ejected from a modified Ekman layer a t  the rear of 
the sphere. Since the out-flow is set, by the upstream flow, the rear rotation rate 
and slug pressure must adjust themselves just to allow the given mass flow to be 
ejected. Unfortunately, this Ekman layer is not of a simple form and displays 
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the difficulties described in Maxworthy (19686). Fluid is not smoothly ejected 
over the whole layer, but tends to  form a central jet which goes through a vortex- 
jump process before it forms the rear slug. The outer shear layer and the slug 
region are of the same thickness, at the low values of T of these experiments, so 
that the interaction between the flows in regions I11 and V I  is significant and 
one is not justified in considering them separately as in Maxworthy (19683). 
From these qualitative considerations, one can see the numerous interactions 
which go into deciding the total flow, and we are now in a position to discuss each 
of the features in detail. 

4.2. Results of $ow-jield measurements 
Region I1 is the forward stagnant region or slug. It is probably the most striking 
feature that one can observe using dye as a fluid tracer. It is a sharply defined 
region of almost stagnant fluid; that is, the axial velocity is very low, although the 
relative swirl velocity can be quite large. A slow axial motion is induced by the flow 
into the Ekman layer required to match the difference between the swirl velocity 
of the slug and that of the sphere. Far upstream, this small axial flow must come 
from a streamtube located very close to the axis of symmetry. When a particle 
reaches the nose of the slug, its axial and swirl velocities are very drastically and 
rapidly changed (figure 9(c), plate 2, and figure 10, plate 3), and the processes 
which occur are of some significance, as will be shown when detailed velocity 
measurements are presented. The length of the slug is an obvious feature to 
measure. It can be done in two ways: using hydrogen bubbles to locate the nose 
region where the axial and swirl velocities change rapidly, and by using the dye 
technique described in 3 2.3. Because of the slow axial velocity in the slug, and 
the consequent leakage of dye from the front to the rear of the sphere, the dye 
column changes length as the sphere rises. By taking pictures a t  several axial 
positions of the sphere (figure 8 ( a ) ,  ( b ) ,  (c), plate 1) and extrapolating the dye 
column length to the length it has at the sphere’s starting position, agreement 
between the two methods is obtained. Results are shown in figures 11 and 12. 
For large T, as N increases, the slug length grows exponentially. Even for N as 
small as 0.5, there is evidence of a very small slug. The rapid collapse of the stag- 
nant region as N is slightly decreased below 4 or 5 is certainly the reason Taylor 
(1922) missed its existence when N was below his often-quoted value of 27~. The 
argument given by Greenspan (1968, p. 200)) based on the velocity required 
to  maintain the head of a propagating inertial wave stationary with respect to 
the body, is more realistic for it gives a value of N N 3 for the location of the 
transition between short and long slugs. 

For most values of T the slug length reaches a maximum or asymptotic length 
when N is beyond 5. Even though they are not shown, results for N N 100 give 
the same lengths as N N 10, as indicated by comparing figures 8(b) and (d )  
(plate 1). 

The only deviation occurs for small T, i.e. O(lO), for which it was not possible 
to extend the range of N beyond 10. The asymptotic values are plotted versus T 
on figure 12, where it can be seen that L/a = T117, which is one order ofmagni- 
tude smaller than the length suggested by the arguments which led to the 

30-2 
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qualitative picture shown in figure 1. There are at  least two possible reasons for 
this large discrepancy. One is easy to check, the other is not, at  least in the 
present apparatus. First, the theory does not take account of the effect of the 
Ekman layer flux on the outer flow. At large T and N ,  using the apparatus of 
figure 3 ( c ) ,  we can change this boundary-layer flux by changing the rotation 
rate of the sphere. Ultimately, the rotation rate of sphere and slug could be 
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FIGURE 11. Length of the forward stagnant region (Lla) versus N for various T. 

matched precisely and the flux reduced to zero. Results of such tests, although 
interesting, do not give the dramatic result that we seek. The slug does not 
suddenly grow ten times larger when we reduce the boundary-layer flux towards 
zero. There are subtle changes, small adjustments in length and shape, the appear- 
ance of instability, but apparently this mechanism is not the dominant one which, 
in some sense, sets the scale of the upstream flow. The second possibility concerns 
inertial effects within the flow. Certainly they have been ignored in the theory, 
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and on superficial inspection we would seem to have ruled them out experi- 
mentally. To the accuracy to which the experiments can be performed, we find 
that the slug length does not change for N between 5 and 100, for large enough 
values of T; i.e. apparently inertial effects do not affect the important dynamics 
within the forward disturbance when they are made somewhat smaller than the 
Coriolis forces. The question becomes: is an N of 100 large enough? Related 
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FIGURE 12. Asymptotic value of Lla versus T for large values of N .  

work designed to determine the effect of end walls on these flows (Maxworthy 
1968b) and for which there is also an exact linearized solution (Moore & Saffman 
1968) strongly suggests that in the present case we are far from the slow-flow 
limit. In  that work, the appropriate magnitudes were found to be that €PIN 
should be at  least O(10-9). Or that inertia forces should be very much smaller 
than both Coriolis and viscous forces. Typically this parameter has a value of 
unity in the experiments being reported ! For the values of T of these experiments 
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N would have to be O( lo6) for R2/N to be of the magnitude stated. Of course, this 
argument requires that the same parameter be the correct one for the present 
case. It seems very unlikely that it will, but a t  least it points to the possibility 
of inertial effects still being important, and eases the dilemma of having a per- 
fectly acceptable theoretical solution but being unable to  approach it in an 
experiment which was originally designed, in part, to  do so. 

The hydrogen-bubble technique can give further information about this region 
and is especially useful in deciding the slug structure when N > 6;  that is, large 
enough for the slug to have reached its asymptotic length (figure 13, plate 4). 
The technique described in 3 2.3 and shown on figure 4 was used to determine the 
axial and azimuthal velocity profiles. Since most of the terms in the radial 
momentum equation are small compared to  the Coriolis term we can reconstruct 
the pressure gradient and hence the pressure ( p )  from a modified geostrophic 
equation, 

and the boundary condition that j3 equals Pmt a t  large f .  Whence 

r i  r i  

07, being the local angular velocity as found from the construction of figure 4. 
I n  dimensionless form this becomes, 

where 13 has been made dimensionless in units of pU$/2, 6 in units of Q and i 
in units of a. 

Results of such a measurement are shown in figure 4, where typical velocity and 
pressure profiles are plotted for a downstream wake.: Figure 15 shows how the 
pressure on the centre line, and within the slug, varies with N .  The pressure is 
much larger than free-stream stagnation pressure, and we must now decide on 
a consistent mechanism for the formation of such a large pressure. 

Up to this point, we have treated the upstream slug as an isolated phenomenon 
when it is, in fact, surrounded by other features (regions I and V) which are 
important in themselves and lead t o  the required new insights into the structure 
of the slug. These regions comprise the flow upstream of the slug (regions I) and 
a region of accelerated flow (region V) immediately surrounding the slug. 

In region I the axial velocity is everywhere markedly non-zero. Disturbances 
decay as we move upstream, i.e. uniform flow conditions are approached, until 
the flow merges into the appropriate, limiting Oseen flow, as discussed by 
Childress (1964) or into the appropriate inviscid flow, as discussed by Miles 

t The subscript co refers to conditions in the undisturbed flow far upstream. 
$ This method is less useful when the slug length is short, since axial flow gradients 

become important and invalidate the assumptions basic to the method. It is at best of 
qualit,ative use under these circumstances. The values plotted in figure 15 are for long 
slugs for which ( 1 )  is valid. 
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(1969a, b) .  The swirl velocity is small everywhere, so that when we observe the 
flow, using the hydrogen-bubble technique, a good represeitation of the axial 
velocity profile is obtained without having to resort to further data reductions. 
Figure 14 (plate 5 )  and figure 10 (plate 3) are typical photographs. Several 
interesting observations emerge. We may compare these results to  theoretical 
predictions of Stewartson (1958) and Miles (19694. Direct comparison with the 
results for a sphere yields no agreement for the upstream flow. However, if we 
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FIGURE 15. Variation of stagnant region centre-line pressure with N and T for 
various axial locations. Upstream and downstream slugs. 

assume that an inviscid outer flow is passing over a composite body made up of 
the sphere plus the forward stagnant region, startling agreement with the inviscid 
slender ellipsoid theory of Miles (1969a) is 0btained.t Figure 16 shows these 
comparisons for the centre-line velocity for values of N and T, for which the 
stagnant region is not too long, and for which velocity profiles at  several axial 
locations are available. Whether such conclusions are valid for larger values of 
N and T, i.e. for long slugs, is not known because of the limited axial extent of the 
experiments. Further support for the point of view in Miles (1969b) comes from 
observing many photographs like those shown in figure 15 (plate 5) and figure 10 
(plate 3). Invariably at low values of N the velocity profiles closest to the body 

t The author is indebted to J. W. Miles for suggesting this method of comparison, 
which is also reported, in numerical form, in Miles (1969s). It is also implicitly assumed that 
the rearward flow has a small effect on the flow upstream. 
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consist of a series of oscillations, rather like the zero-order Bessel function, 
which change, as we go farther from the body, to profiles with fewer and fewer 
obvious wiggles. Unfortunately the data is not precise enough to compare, with 
any great confidence, to the theory and we are left only with the quantitative 
data of figure 16 and the qualitative observations shown in the plates. This up- 
stream flow is matched to the conditions in the slug through a vortex-jump region 
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within which the axial and swirl velocities are very rapidly changed. I n  figure 
9(c) (plate 2 )  and figure 10 (plate 3) we see the very rapid deceleration of the 
flow that takes place. Plotting the axial centre-line velocity in figure 17 shows 
that the velocity is reduced from a large value to essentially zero within a length 
of the order of the body radius. At the same time, the swirl velocity changes 
rapidly from small values to large values, indicating, through (2),  a large axial 
pressure gradient. 

Such an observation now allows us to tie several of our previous results to- 
gether, in particular the short forward slug length and the high slug pressure are 
consistently explained. Along the centre-line, only viscous forces can elevate the 
pressure above the free stream stagnation pressure (p:), i.e. 

if it  is assumed that initially the viscous forces due to gradients in both T and x 
directions are equally important. If 1 and 6 are typical length scales in the x 

(Urn) ,  dynamic pressure (+pU2,) and body radius (a) .  
t Quantities have been made dimensionless with respect to the free stream velocity 



Sphere in a rotating, slightly-viscous fluid 473 

and r directions, respectively, then the change in po,  with v, of arder unity, is 
given by 

Most observations bear out the fact that 1 > 6, whence Apo - 1IRd2. 
In  the theoretical work on this problem, the adjustment to Apo N O(N)  takes 

place with 6 N O(1) and I - O(T).  In the present experimental work the adjust- 
ment probably takes place with I N O(1) and 6 - O(T-*) under most circum- 
stances. However, as viscous effects become more important, at large T and 
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FIGURE 17. Centre-line axial velocity versus axial location, showing the rapid 
deceleration of flow at nose of the stagnant region for N = 3.99, 1' = 435. 

small R, the region becomes more smeared out and some statement intermediate 
between these two becomes appropriate. The observation that the flow adjusts 
itself so that the static pressure changes in a short axial distance is important 
and qualitatively bears out the numerical calculations of Bossell (1967), in which 
it is decided that this rapid transition is, in fact, a vortex jump in the rotating 
flow. This again shows that for our relatively large R[- O(lO)] and large 
N [  w O( lo2)] inertia forces are still important, since they must be considered in 
such a rapid transition. The need to perform experiments at  smaller values of R 
and larger values of N is obvious, but only by major modification of the present 
apparatus could such measurements be made. 

Similar arguments, based on viscous effects, also hold downstream, where the 
pressure must change from being negative and O ( N )  (see figure 15) to the static 
pressure at  infinity. Unlike the forward slug, however, no regions of rapid axial 
change have ever been noted in the downstream flow, and the adjustment is 
always made in an extensive axial distance, presumably of order T long. 

The central slug region I1 has a natural extension around the sphere and 
into the central region behind the sphere (regions I11 and IV). Fluid from I1 is 
sucked uniformly into the Ekman layer on the sphere, it flows around the sphere 
equator in a thin high velocity sheet and is then ejected into the rearward, low 
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axial-velocity slug. The character of the ejection process is interesting and is 
unlike the process that one might expect from such an Ekman Layer. The reader 
is referred to Maxworthy (1968 b)  for a discussion of this process when T is very 
large; for the present relatively small values of T the details are somewhat 
different. Boundary-layer fluid instead of being smoothly ejected tends to form 
a concentrated rapidly swirling jet a t  the lower pole of the sphere. This jet then 
rapidly spreads to  a larger radius with lower axial and azimuthal velocities. 
Figure 9 (a)  (plate 2) shows this in a very convincing manner when N is small 
and consequently the velocities within the slug regions are not small. Such evi- 
dence points to the bursting being yet another form of vortex jump or breakdown, 
first found within the vortices above delta wings at  angle of attack, but subse- 
quently observed in many types of rotating-flow experiment. As N increases in 
magnitude and the axial velocities within the slugs become smaller, the jump 
becomes of smaller and smaller axial extent until it has the oscillatory form shown 
in region I11 of figure 7. At this stage, dye observations show that the central 
part of the downstream slug is filled with clear fluid surrounded by an annular 
dye column (as drawn in region IV of figure 7).  This again is characteristic of 
strong vortex-jump conditions, partially explained in Benjamin (1962) and also 
found in strong concentrated vortices (Maxworthy 1967). As N is increased 
further, it  becomes more difficult to  observe the detaiIs although one can say, 
without hesitation, that something out of the ordinary is happening in this 
region. Again, the hydrogen-bubble method gives details of the velocities in 
region I V  as shown in figures 4 and 18(b) (plate 6). The pressures can also be 
calculated, as for the forward slug, and are plotted in figure 15. The angular 
velocities are larger in magnitude than those in the forward slug, so that the 
magnitude of the lower pressure in the rear slug is larger than that of the elevated 
pressure in the forward slug. The increased drag of the sphere comes more from 
the decreased rearward than from the increased upstream pressure. 

By concentrating our attention on particles which are close to the centre-line, 
we have so far missed the interesting details of the flow a t  larger radii (regions 
V, VI and VII), where there exists a velocity in excess of the free-stream value. 
This accelerated region has two reasons for existence, one being associated with 
the inviscid or wave drag, and the other with the viscous wakes and form drag. 
In  inviscid flow, the wave drag appears as a large decrease in pressure over the 
rear of the body. The only way to get a Iarge suction, if@ is to remain constant, 
is for there to be a large excess velocity over the rear of the sphere; cf. stratified 
flow and free surface flow over an obstacle (figure 18, plate 6). This region is fed 
from upstream between two stream surfaces that come closer and closer together 
as the body is approached. A locally supercritical flow is formed, which jumps 
a t  some location to a subcritical state. For the free surface case we have a hydraulic 
jump, and in the rotating case a vortex jump. Secondly, the viscous wakes act 
as sources and sinks of fluid, in an unsteady flow (figure 19). The effect of rotation 
is to channel this fluid motion into a narrow annulus surrounding the almost 
stagnant region. Unfortunately, the method of measuring the swirl velocity and 
inferring the pressure field is not very sensitive in these regions because of the very 
small magnitudes of the velocities. However, oblique views of sheets of hydrogen 
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bubbles and even imaginative interpretation of pictures such as figure 9(c) 
(plate 2), figure 10 (plate 3) and figure 18(b) (plate 6) show that flow in this 
region is rotating slowly in a positive direction.? From ( Z ) ,  this means that the 
pressure is below the static value at large distances. Whether this just indicates 
that the flow along these stream lines is essentially inviscid, so that p0 remains 

7 
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FIGURE 19. Physical explanation for region of high velocity surrounding stagnant slug. 
Upstream slug acts as a source and downstream slug as a sink of fluid which is channelled 
by the constraint of rotation into a narrow annular region. 

constant, or whether p0 has been decreased by viscous action, cannot be stated 
with certainty at  this point. A crude estimate based on oblique views would 
suggest that the former possibility is closely realized, but the evidence is not 
conclusive. 

4.3. Comments on the interaction between the various regions of theJiowJieM 
Now that the details of the flow field have been presented it is useful to try to 
fit them into a consistent physical picture. The easiest case seems to occur when 
N is less than about 5 or 6. In  this case the nose of the upstream Taylor column 
always appears abruptly, and the inviscid theory of Miles (1969a’ b)  seems to 
describe the flow development ahead of the body and slug. Then the flow up- 
stream of the sphere must consist of the following closed system of interactions, 
all of which are interdependent. The inviscid flow upstream of the slug is super- 
critical by Benjamin’s (1962) criterion and becomes closer and closer to critical 
as the tip of the slug is approached. A vortex jump occurs at a value of the 

t The basic rotation has a positive direction, as does swirl in the rear slug. Swirl in the 
forward slug has negative rotation. 
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Benjamin number? for which a matching to  the subcritical interior slug flow 
can be made. This subcritical flow is in turn controlled by the need to satisfy the 
downstream conditions a t  the surface of the sphere; that  is, with flow into the 
Ekman layer, and presumably some inertial radial flow, setting the mass flow 
and the slug rotation rate. The length and shape of the slug so formed in turn 
determines the nature of the upstream inviscid flow that started the discussion. 
This series of interactions (inviscid flow-vortex jump-subcritical slug-flow over 
sphere-inviscid flow) immediately suggests the form of the analogous free surface 
flow. The initially supercritical flow is modified by bottom friction in this case. 
A hydraulic jump occurs in front of an obstacle a t  a location where the super- 
critical flow has lost enough momentum to match the downstream conditions. 
The latter are in turn set by the flow over the obstacle itself. I n  this case it is 
obvious that the upstream influence of the body only reaches as far as the jump 
region, the supercritical flow upstream being unaffected by the body’s presence. 
I n  the rotating flow case the statement cannot be as strong, since the upstream, 
supercritical, inviscid flow is affected by the shape of the slug-sphere combina- 
tion. However, wave propagation from the body can only be felt as far as the 
location of the vortex jump and flow ahead is free of waves moving upstream. 

Flow downstream of the sphere is complicated but seems free of any contro- 
versy. Boundary-layer fluid being ejected from the rear Ekman layer forms a 
swirling jet which breaks down to form the rearward, subcritical Taylor column. 
The slug pressure and rotation so formed must also match that created by the 
vortex jump of the high-velocity annular jet which comes from the upstream 
inviscid flow. 

What happens when N becomes large is less clear. The downstream flow is 
qualitatively the same but the upstream flow is changed. The vortex jump 
region becomes smeared out and viscosity acts over a larger axial distance. It 
seems incorrect to  talk of an outer inviscid flow in this case and perhaps the 
matching takes place either directly, or through another buffer region, to the 
far field solution of Childress (1964). Because of their limited axial extent the 
present experiments can make no definitive statement about this case. 

4.4. Ximilarities to theJlow of a strutijiedjuid over an obstacle 

Similarities to the case of a continuously stratified fluid flowing over an obstacle 
should be brought forth a t  this point. Several investigations have appeared 
recently : Miles (1968a) b)  on the flow of an inviscid stratified fluid, and Martin 
& Long (1968)) Janowitz (1968) and Pao (1968) on flows with modifying effects 
of viscosity alone included or viscosity and fluid inertia included. Again the 
problem arises: under what circumstances is an inviscid solution a valid approxi- 
mation to the flow ahead of the body and a t  what point must viscosity be included. 
As we have already seen, an identical question arises in the present rotating-flow 
case. The strongest statement that one can make is included in 5 4.3 and suggests 
that the inviscid solution is valuable under some circumstances. How this state- 
ment can be extended into the stratified flow problem is not clear at  the moment, 

t The Benjamin number is the swirling flow equivalent of the Froude number of free 
surface flows. See Benjamin (1962, p. 601), for a precise definition. 
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mainly because of our ignorance of the details of upstream slug formation in this 
case. To the author’s knowledge, nobody has observed an internal hydraulic 
jump at  the nose of the blocked region so that viscosity may well be a more 
important effect in this case. To carry the similarity between the two cases still 
farther, the above-mentioned studies all show jet-like regions in the far field in 
which the velocities are alternately larger and smaller than the free stream value 
as transverse distance increases. The present results show the same effects (see 
e.g. figures 9 (c ) ,  plate 2; 10, plate 3; 13, plate 4; 14, plate 5) .  Although as N and T 
increase, the outermost jets become weaker and weaker until only one accelerated 
region (region V, figure 7) can be clearly seen. 

5. Transient flow observations 
From the results of 3 3 and experience gained in observing large spheres rise 

through short cylinders, it is apparent that a weak interaction is taking place 
between the wakes created by the motion and the end wall of the apparatus. 
That it is a small effect in the present case is obvious from the magnitude of the 
correction applied and the fact that no effects attributable to variations of sphere 
diameter were found in the present experiments. In  order to investigate the 
matter further, a series of transient experiments were performed, all of which 
pointed to the small effects of end walls on the results. The rationale and methods 
were as follows: 

(i) If the free sphere was released from the apparatus of figure 3 (b) ,  and reached 
its terminal velocity before dye observations showed waves propagating from 
the body hitting the end wall, then the end-wall effects could be considered small. 

(ii) If the towed sphere was started impulsively from rest in the apparatus of 
figure 3 (d)  and the hydrogen-bubble pictures indicated that the flow field in the 
neighbourhood of the sphere had reached a steady state before waves from the 
body had had time to reach the end walls, then end-wall effects could be con- 
sidered small. It is apparent from the manner of problem statement that negative 
results were found in both cases. 

As a bonus from these latter measurements, it is possible to determine the 
velocity with which disturbances propagate away from the body along the axis 
of rotation. From the photographs it was determined that the velocity, in one 
case, was 3.0 k 0.1 cmlsec, equivalent to the velocity of an inertial wave of wave- 
length 2-36 _+ 0 . 0 5 ~ .  The calculation performed by Greenspan (1968, p. 200) 
gives a wavelength of 2.12a. The head of the propagating wave was very similar 
in nature to the head of the steady Taylor column, i.e. the axial velocity was 
brought to zero, and the swirl velocity increased within a short axial distance. 

It is apparent from these discussions that the nature of the wall interaction 
is similar to that described by Moore & Saffman (1968) and that the flow in the 
wakes is slightly affected by the need to satisfy the boundary conditions appro- 
priate to a divergent Ekman layer at the end walls. 
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6. Conclusions 
Measurements of the drag coefficient (CD) of a sphere rising through a rotating 

cylinder of water have produced the following results. (a)  For small values of 
N ,  C, is less than the value for N = 0;  ( b )  for large T and N ,  

C, = (2.60 0.05) N1'""*O'Ol; 

( c )  for large T and 1.4 < N < 4, 
Q - 4.10 + 0 . 1 0 ~ 2 ~ 0 0 5 0 ~ 0 2 ~  D -  - 

Flow field observations using various dye and hydrogen-bubble techniques 
show the following features. (a)  Stagnant regions are formed up- and downstream 
of the sphere. Within the upstream slug is a positive static pressure of O ( N )  and 
a slow axial flow that feeds an Ekman layer on the sphere surface. This fluid 
flows around the sphere equator and is ejected as a jet, followed by a vortex 
jump, into the downstream slug. Pressure in this slug is negative and O ( N ) .  
(b)  Surrounding these slugs is an annular region with a velocity larger than the 
free-stream value. Flow approaching the sphere from upstream accelerates, 
forms a vortex jump beyond the equator and then decelerates slowly downstream 
under the action of viscosity. ( c )  The upstream slug has length (L) which is given 
by: Ltja = TI17 for N > 6. Flow approaching the tip of this slug is decelerated 
within a small axial distance, defining the beginning of the slug very accurately. 
Because the flow downstream changes so slowly, it is not possible to make a 
similar measurement there. 

Duncan E. Griffith designed and constructed most of the apparatus, and to 
him should go the praise for any success this work might have. 

Much of the work reported here was performed at  the Jet  Propulsion Labora- 
tory, Pasadena, California, and supported by the National Aeronautics and Space 
Administration, contract NAS7-100. It was completed under the sponsorship of 
the National Science Foundation, grant no. GK 2731 to the University of 
Southern California, Department of Aerospace Engineering, Los Angeles, 
California. 

R E F E R E N C E S  

BENJAMIN, T. B. 1962 Theory of the vortex breakdown phenomenon. J .  Fluid Mech. 
14, 593. 

BENJAMIN, T. B. 1967 Some developments in the theory of vortex breakdown. J .  Fluid 
Mech. 28, 65. 

BOSSEL, H. H. K. 1967 Inviscid and viscous models of the vortex breakdown phenom- 
enon. Report no. AS-87-A, College of Engineering, University of California, Berkeley. 

BRETHERTON, F. P. 1967 The time dependent motion due to a cylinder moving in an 
unbounded rotating or stratified fluid. J .  Fluid Mech. 28, 645. 

CHILDRESS, W. S. 1962 Rotating, viscous flow past an axially symmetric solid. Jet Prop. 
Lab. Space Prog. Sum. no. 37-18, IV, 46-48. 

CHILDRESS, W. S. 1964 The slow motion of a sphere in a rotating, viscous fluid. J .  Fluid 
Mech. 20, 305 

GRACE, S. F. 1928 On the motion of a sphere in a rotating liquid. Proc. Roy. SOC. Lond. 
A 113, 48. 



Sphere in a rotating, dightly-viscous fluid 479 

GREENSPAN, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press. 
JANOWITZ, G. S. 1968 On wakes in stratified fluids. J .  Fluid Mech. 33, 417. 
KUCHEMANN, D. 1965 Report on the I.U.T.A.M. symposium on concentrated vortex 

motions in fluids. J .  Fluid Mech. 21, 1. 
LONG, R. R. 1953 Steady motion around a symmetrical obstacle moving along the axis 

of a rotating fluid. J .  Met. 10, 197. 
MARTIN, S. & LONG, R. R. 1968 The slow motion of a flat plate in a viscous, stratified 

fluid. J .  Fluid Mech. 31, 669. 
MAXWORTHY, T. 1965 A n  experimental determination of the slow motion of a sphere in 

a rotating, viscous fluid. J .  Fluid Mech. 23, 373. 
MAXWORTHY, T. 1967 The flow creating a concentration of vorticity over a stationary 

plate. Jet Prop. Lab. Space Prog. Sum. no. 37-44, IV, 243-249. 
MAXWORTHY, T. 1968 a Experimental studies in magneto-fluid dynamics : pressure 

distribution measurements around a sphere. J .  Fluid Mech. 31, 801. 
MAXWORTHY, T. 1968b The observed motion of a sphere through a short, rotating 

cylinder of fluid. J .  Fluid Mech. 31, 643. 
MILES, J. W. 19680 Lee waves in a stratified flow. Part I. Thin barrier. J .  Fluid. Mech. 

32, 549. 
MILES, J. W. 1968b Lee waves in a stratified flow. Part 11. Semi-circular obstacle. 

J .  Fluid Mech. 33, 803. 
MILES, J. W. 1969a The lee-wave regime for a slender body in a rotating fluid. J .  Fluid 

iiech. 36, 265. 
MILES, J. W. 19693 Axisymmetric flow of a rotating, viscous liquid over a given stream 

surface. J .  Fluid Mech. (To be published.) 
MOORE, D. W. & SAFFMAN, P. G. 1968 The rise of a body through a rotating fluid in 

a container of finite length. J .  Fluid Mech. 31, 635. 
MOORE, D. W. & SAFFMAN, P. G. 1969 The structure of free vertical shear layers in a 

rotating fluid and the motion produced by a slowly rising body. Trans. Roy.  SOC. Lond. 
A 264, 597. 

MORRISON, J. W. & MORGAN, G. W. 1956 The slow motion of a disk along the axis of 
viscous, rotating liquid. Report 56207/8, Div. of Appl. Math. Brown University. 

PAO, H. H. 1968 Laminar flow of a stably stratified fluid past a flat plate. J .  Fluid Mech. 
34, 795. 

PROUDMAN, J. 1916 On the motion of solids in a liquid possessing vorticity. Proc. Roy. 
Soc. Lond. A 92, 408. 

ROTT, N. & LEWELLEN, W. S. 1966 Boundary layers in rotating flows. In Progress in 
Aeronautical Sciences, vol. 7. Oxford : Pergamon. 

SCHRAUB, I?. A., KLINE, S. J., HENRY, H., RWNSTADLER, P. W. & PITTELL, A. 1965 
Trans. A.S.M.E. Ser. D, 87, 429. 

SQUIRE, H. B. 1956 Rotating fluids. In  Xurveys in Mechanics (ed. G. K. Batchelor & 
R. M. Davies). Cambridge University Press. 

STEWARTSON, K. 1952 On the slow motion of a sphere along the axis of a rotating fluid. 
Proc. Camb. Phil. SOC. 48, 168. 

STEWARTSON, K. 1958 On the motion of a sphere along the axis of a rotating fluid. Quart. 
J .  Mech. Appl. Math. 11, 39. 

STEWARTSON, K. 1968 On inviscid flow of a rotating fluid past an axially-symmetric 
body using Oseen’s equations. Quart. J .  Mech. Appl. Math. 21, 353. 

TAYLOR, G. I. 1917 Motion of solids in fluids when the flow is not irrotational. Proc. Roy. 
Xoc. Lond. A 93, 99. 

TAYLOR, G. I. 1922 The motion of a sphere in a rotating liquid. Proc. Roy. Soc. Lond. 
A 102, 180. 

TAYLOR, G. I. 1923 Experiments on the motion of solid bodies in rotating fluids. Proc. Roy. 
Soc. Lond. A 104, 213. 





Journal of Fluid Mechanics, Vol. 40, part 3 

MAXWORTHY 

Plate 1 

0, 

5 

(Pacing p .  480) 



3
 

3 R
 

x 

F
IG

U
R

E
 

9 
(a

, b
).

 P
h

o
to

g
ra

p
h

s 
of

 a
 s

p
h

er
e 

ri
si

ng
 f

ro
m

 a
 re

gi
on

 
of

 d
y

e 
co

n
ce

n
tr

at
io

n
. 

F
o

r 
(a

) N
 
=

 3
.4

, 
T

 =
 1

52
, s

ho
w

in
g 

th
e 

n
at

u
re

 o
f 

th
e 

b
o

u
n

d
ar

y
-l

ag
er

 e
ru

p
ti

o
n

 t
o

 f
o

rm
 t

h
e 

re
ar

 
w

ak
e;

 (
b

) 
N

 
=

 3
5,

 T
 =

 2
75

, 
sh

ow
in

g 
th

e 
al

m
o

st
 c

on
ic

al
 

sh
ap

e 
of

 t
h

e
 f

o
rw

ar
d

 s
lu

g
 a

n
d

 th
e

 b
eh

av
io

u
r 

of
 t

h
e 

b
o

u
n

d
ar

y
 

la
y

er
 a

s 
it

 m
ov

es
 a

ro
u

n
d

 t
h

e 
sp

h
er

e 
eq

u
at

o
r.

 (
c)

 N
 =

 3
.9

9,
 

T
 =

 4
35

, 
h

y
d

ro
g

en
 b

u
b

b
le

 p
ic

tu
re

 o
f 

th
e

 f
o

rw
ar

d
 w

ak
e,

 
us

in
g 

a 
se

ri
es

 o
f 

pu
ls

es
 s

p
ac

ed
 e

q
u

al
ly

 i
n

 t
im

e.
 N

o
te

 t
h

e 
ra

p
id

 d
ec

re
as

e 
in

 a
x

ia
l 

ve
lo

ci
ty

 
o

f 
th

e 
no

se
 

of
 

th
e 

sl
ug

 
(u

p
p

er
 w

ir
e)

 a
n

d
 t

h
e 

d
is

to
rt

io
n

 o
f 

b
u

b
b

le
 

li
ne

s 
b

y
 b

o
th

 
ro

ta
ti

o
n

al
 a

n
d

 a
x

ia
l 

m
ot

io
n.

 

p
.3

 



Journal of Fluid Mechanics, Vol. 40, part 3 Plate 3 

FIGURE 10. Multiple-pulse hydrogen-bubble picture of flow ahead of a sphere for N = 1.75, 
T = 375. Note the clear definition of the small forward stagnant region for this small 
value of N .  
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FIGURE 13. A composite hydrogen-bubble picture showing both the forward and rearward 
slugs for N = 7.93, T = 386. Note the velocity larger than free stream outside the slug 
region and the slow decay of disturbances both up- and downstream. The shape of the 
first bubble line formed shows, dramatically, the distortion of this line by the rapid rotation 
within the slug. 
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FIGURE 18. (a )  Free surface flow over an obstacle showing an acceleration to supercritical 
flow, a hydraulic jump and boundary-layer separation behind the maximum transverse 
dimension. ( b )  Hydrogen bubble picture of rearward wake when T = 438, N = 6.58. 
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